近年来,环保理念深入人心,大气污染治理引起各界关注,废气处理成为各行业关心的话题,本文将介绍活性炭(ACF)吸附塔工艺流程、工作原理及应用,内容如下:
2、工艺说明
车间有机废气通过吸气罩收集,在排风机作用下,经过管道输送进入干式过滤器,再进入活性炭吸附装置,有机污染物被活性炭吸附,净化后的气体经风机增压后达标排放。
活性炭吸附饱和后,请专业厂家再生后回用。
3、活性炭的吸附原理
根据吸附过程中,活性炭分子和污染物分子之间作用力的不同,可将吸附分为两大类:物理吸附和化学吸附(又称活性吸附)。在吸附过程中,当活性炭分子和污染物分子之间的作用力是范德华力(或静电引力)时称为物理吸附;当活性炭分子和污染物分子之间的作用力是化学键时称为化学吸附。物理吸附的吸附强度主要与活性炭的物理性质有关,与活性炭的化学性质基本无关。由于范德华力较弱,对污染物分子的结构影响不大,这种力与分子间内聚力一样,故可把物理吸附类比为凝聚现象。物理吸附时污染物的化学性质仍然保持不变。
由于化学键强,对污染物分子的结构影响较大,故可把化学吸附看做化学反应,是污染物与活性炭间化学作用的结果。化学吸附一般包含电子对共享或电子转移,而不是简单的微扰或弱极化作用,是不可逆的化学反应过程。物理吸附和化学吸附的根本区别在于产生吸附键的作用力。
吸附过程是污染物分子被吸附到固体表面的过程,分子的自由能会降低,因此,吸附过程是放热过程,所放出的热称为该污染物在此固体表面上的吸附热。由于物理吸附和化学吸附的作用力不同,它们在吸附热、吸附速率、吸附活化能、吸附温度、选择性、吸附层数和吸附光谱等方面表现出一定的差异。
活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。70年代开始用于工业废水处理。生产实践表明,活性炭对水中微量有机污染物具有卓越的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。一般情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成染料、表面性剂、酚类、苯类、有机氯、农药和石油化工产品等,都有独特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。
吸附是一种物质附着在另一种物质表面上的缓慢作用过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响。吸附量随水温的升高而减少,随pH值的降低而增大。故低水温、低pH值有利于活性炭的吸附。
活性碳纤维(ACF)
以新型吸附材料—活性碳纤维(ACF)为吸附剂的吸附法是近几年发展起来的一种新型的有机废气回收方法,被认为是最有效的回收净化有机废气的新方法,近年来已引起广大研究工作者和相关企业的极大关注。
与传统的活性炭相比,活性碳纤维具有以下优异特性:
活性碳纤维(ACF)是继粉状与粒状活性碳之后的第三代活性碳产品。70年代发展起来的活性碳纤维是随着碳纤维工业发展起来的一种新型、高效的吸附剂。其显著的特点是具有发达的比表面积(1000㎡/g~3000㎡/g)和丰富的微孔,微孔的体积占总孔体积的90%以上,微孔直径约10 Angstrom(1Angstrom =1×10-10m)左右,故其有很强的吸附能力。
ACF 吸附装置组成:
预处理装置、吸附罐/吸附器、脱附冷凝回收系统、干燥降温系统。
工艺流程
挥发性有机气体先经过一定的前处理装置,再经过滤器进一步去除尾气中的杂质,以保证这些杂质不占用活性碳纤维的孔隙,影响活性碳纤维的吸附效率和使用寿命;过滤后的尾气经风机引入吸附设备。
吸附了一定数量有机溶剂的活性碳纤维,用饱和水蒸汽进行解吸,解吸完成后将通过过滤的外界空气送入吸附器由风机进行干燥,使活性碳纤维床层冷却并去除残留的蒸汽,使活性碳纤维保持较高的吸附效率。干燥好的吸附器进入下一工作程序循环进行吸附。
解吸出的含有机物的混合蒸汽进入冷凝器中进行一级冷凝,冷凝液再经板式冷凝器冷却,经过冷凝的有机物和冷凝水进入分层槽,经重力分层,上层的有机物自动溢流至储槽,然后经输送泵送到吸附回收设备;下层的冷凝水排入废水处理系统。
ACF成本控制方面优势: